信息门户| 信息公开| 联系校领导| 教师邮箱| 学生邮箱
师大新闻| English Version| 旧版入口|  

教师邮箱学生邮箱

导航

学术动态

动态发布,集中呈现学校学术活动预告、专家学者观点、学术成果荣誉等。

[预告]06.06 统计学院系列学术报告(2018年第11期)

  报告时间:2018年6月6日(周三)16:00

 

  报告地点:统计学院办公楼(原城乡一建)1层104会议室

  

  第一部分:

 

  题目:Asympirical Analysis: A New Paradigm for Data Science

 

  报告人:马平教授,佐治亚大学

 

  报告人简介:Prof. Ping Ma is a Professor of Statistics and co-directs the big data analytics lab at the University of Georgia, USA. He was Beckman Fellow at the Center for Advanced Study at the University of Illinois at Urbana-Champaign, Faculty Fellow at the US National Center for Supercomputing Applications, and a recipient of the US National Science Foundation CAREER Award. His paper won the best paper award of the Canadian Journal of Statistics in 2011. He serves on multiple editorial boards including the Journal of the American Statistical Association and Statistical Applications in Genetics and Molecular Biology.  He is a fellow of the American Statistical Association.

 

  摘要:Large samples have been generated routinely from various sources. Classic statistical and analytical methods are not well equipped to analyze such large samples due to expensive computational costs.

 

  In this talk, I will present an asympirical (asymptotic + empirical)  analysis in large samples. The proposed method can significantly reduce computational costs in high-dimensional and large-scale data. We show the estimator based on the proposed methods achieves the optimal convergence rate. Extensive simulation studies will be presented to demonstrate numerical advantages of our method over competing methods. I will further illustrate the empirical performance of the proposed approach using two real data examples. 

  

  第二部分:

 

  题目:Reference-Free Learning with Multiple Metagenomic Samples

 

  报告人:钟文瑄教授, 佐治亚大学

 

  报告人简介:Prof. Wenxuan Zhong is a Professor of Statistics and the founding director of the big data analytics lab at the University of Georgia. She is also the founding member of Georgia Institutes of Informatics. She serves multiple NSF and NIH panels. Her research focuses on the statistical methodology and theory development to face the striking new phenomena emerged under the big data regime. 

 

  摘要: A major goal of metagenomics is to identify and study the entire collection of microbial species in a set of targeted samples. In this talk, I will present a novel statistical metagenomic algorithm that simultaneously identifies microbial species and estimates their abundances without using reference genomes. Compared to reference-free methods based primarily on k-mer distributions or coverage information, the proposed approach achieves a higher species binning accuracy and is particularly powerful when sequencing coverage is low. I will demonstrate the performance of this new method through both simulation and real metagenomic studies.

TOP
友情链接:3731   95905   38457   46752   46141   60543   73189   4618   36783   13378   40525   17653   44813   6745   2425   96922   7406   17425   50888   91550